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Groupe de Mécanique Statistique, Laboratoire de Physique Theorique, Faculté des Sciences,
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Abstract
The diluted mixed spin Ising system consisting of spin- 1

2 and spin-1 with a
random field is studied by the use of the finite cluster approximation within the
framework of a single-site cluster theory. The state equations are derived using a
probability distribution method based on the use of Van der Waerden identities.
In this approach, the complete phase diagrams are investigated for the simple
cubic lattice, when the random field is bimodally and trimodally distributed.
The internal energy, specific heat and susceptibility are also calculated for both
kinds of probability distributions.

1. Introduction

The random field Ising model (RFIM) on mono-atomic lattices, where the local quenched
random field Hi is assumed to have zero average 〈Hi〉r = 0 and is uncorrelated at different
sites, has been the subject of much theoretical [1–4] and experimental [5, 6] investigation of
the statistical physics of random and frustrated systems. The best experimental realization
of a RFIM has been the diluted uniaxial antiferromagnet in a uniform field applied along
the spin ordering axis (DAFF), such as Rb2Cox Mg1−xF4 and FexZn1−x F2 in a magnetic field,
which correspond, respectively, to two-and three-dimensional prototypical systems. It has been
shown [7, 8] that, in the presence of a uniform field, the random exchange interactions give
rise to local random staggered fields and that such a system should be isomorphic to the RFIM.
Indeed, many experiments on DAFF’s have confirmed some of the theoretical predictions
derived for the RFIM [9]. Recently, it has been shown experimentally [10] and through
Monte Carlo (MC) simulations [11] that Fex Zn1−xF2 in an applied uniform field exhibits the
equilibrium critical behaviour of the RFIM for a magnetic concentration x > 0.75. The RFIM
can also be used to describe other processes as the phase separation of a two-component fluid
mixture in porous material or gelatine and a solution of hydrogen in metallic alloys [12]. Recent
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experiments on the liquid–vapour transition in aerogel [13] reveal a coexistence curve similar
to the pure Ising model but slow dynamics suggestive of random field effects. Because the
aerogel creates a random network which attracts the fluid, the RFIM should be an appropriate
model [14] for this system.

One of the main points on which attention has been focused is the lower critical dimension
dl . This is the dimension above which long range order ferromagnetic order can exist. It has
been shown rigorously that the low temperature phase in d > 2 is ferromagnetic [15–17],
which means that dl = 2. Also, experiments support the existence of long range order in the
three-dimensional RFIM (for instance in FexZn1−x F2) [18–20] while such order does not exist
in d = 2 RFIM (for instance, in Rb2Cox Mg1−xF4) [21].

Other important questions concerning the RFIM have been the existence of a tricritical
point and the order of low-temperature phase transitions in three dimensions. This seems not
to be completely elucidated. Indeed, mean-field theories [22–24] predicted that the existence
of a tricritical point depends on the form of the random field distribution. In particular, the
bimodal distribution (±H ) yields a tricritical point and the transition was found to be of first
order for sufficiently strong random fields, while the Gaussian one led to a second-order phase
transition down to T = 0. Using renormalization group calculations [25, 26], it has been
discussed that, with an appropriate distribution function, it may lead to a tricritical point.
Houghton et al [27, 28] have performed detailed numerical studies based on the analysis
of the high temperature series for the static susceptibility of the RFIM with bimodal and
Gaussian distributions. They confirmed the predictions of the mean-field theory for d � 4.
In dimensions d < 4, however, the analysis suggests that, even for a Gaussian distribution,
fluctuation-driven first-order transitions have been observed at low temperatures (sufficiently
strong random fields), implying that d = 4 is a critical dimension for the RFIM. Furthermore,
MC results of RFIM with a bimodal distribution have been either inconclusive (some were
interpreted in support of a first-order transition at finite low temperature [29], while others
favoured a continuous transition [11, 30]) or suggest an unusual behaviour [31] (jump in the
order parameter but with an infinite correlation length at the transition). We have to point
out here that the experiments [18–20, 32] on diluted MnF2 are difficult to clearly interpret
but are suggestive of a first-order transition. We note that there is no general consensus,
experimentally, on whether the transition is continuous or first order.

On the other hand, some authors [33] have studied the case of a spin-S (> 1
2 ) Ising model

in a random field within mean-field-like approximations for a bimodal distribution. They have
predicted a long-range order at T = 0 up to an S-dependent critical value of the field H , and
the existence of a tricritical point. Such a model for any S in a random field, which is trimodally
distributed, has also been investigated within the mean-field theory [34]. The obtained phase
diagram is qualitatively similar to that found earlier [35] for spin- 1

2 and it exhibits a rich
multicritical behaviour. In the limit of very large values of S, the results go asymptotically to
ones obtained for the classical (S → ∞) model.

Recently, attention has been directed to the study of the magnetic properties of two-
sublattice mixed spin Ising systems. They are of interest for the following main reasons. They
have less translational symmetry than their single spin counterparts, and are well adapted for
studying a certain type of ferrimagnetism [36]. Experimentally, it has been shown that the
MnNi(EDTA)–6H2O complex is an example of a mixed spin system [37]. The mixed Ising
spin system consisting of spin- 1

2 and spin-1 has been studied by different methods [38–43].
The effect of dilution on the phase diagrams of these kinds of systems are also investigated by
various techniques [39, 42, 44].

Since the mono-atomic RFIM exhibits very interesting phase diagrams, it is worth
investigating the two-sublattice mixed spin Ising system in a random longitudinal field [45].
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This latter system can be described by the following Hamiltonian:

H = −
∑
〈i j〉

Ji jσi S j −
∑

i

Hiσi −
∑

j

H j S j (1)

where σi and Sj are Ising spins of magnitude 1
2 and S at sites i and j , respectively. Ji j is the

exchange interaction, Hi and H j are the random fields and the first summation is carried out
only over nearest-neighbour pairs of spins.

The first purpose of this paper is to investigate the effects of site dilution on the phase
diagram of the system described by the Hamiltonian (1) when the fields Hi and H j are assumed
to be uncorrelated variables and obey the following symmetric (Q(H ) = Q(−H )) probability
distribution:

Q(Hi) = pδ(Hi) +
(1 − p)

2
[δ(Hi − H ) + δ(Hi + H )] (2)

where the parameter p measures the fraction of spins in the system not exposed to the field.
This system can be described by (1) in which we introduce the site occupancy number ξi which
takes 0 or 1, depending on whether the site is occupied or not. Thus the Hamiltonian of such
a system takes the form

H = −
∑
〈i j〉

Ji jξiξ jσi S j −
∑

i

Hiξiσi −
∑

j

H jξ j S j . (3)

In the present work, we limit ourselves to the case S = 1 and Ji j = J . One notes that, at
p = 1 or H = 0, the system reduces to the simple diluted mixed spin- 1

2 and spin-1 Ising
model [39, 42]. To this end, we use the finite cluster approximation (FCA) [46] within the
framework of a single-site cluster theory. The state equations are derived using a probability
distribution method [47] based on the use of generalized Van der Wearden identities [48] that
account exactly for the single-site kinematic relations.

The second goal is to examined the internal energy, specific heat and zero-field magnetic
susceptibility; especially when the concentration of magnetic sites is changed.

The outline of this work is as follows. In section 2, we give a description of the theoretical
framework. In section 3, the phase diagrams of the system are investigated and discussed.
In section 4, relevant thermodynamical quantities are presented and analysed. Finally, we
comment on our results in section 5.

2. Theoretical framework

The theoretical framework we adopt in the study of the diluted random field mixed spin Ising
model described by the Hamiltonian (3) is the finite cluster approximation [46] based on a
single-site cluster theory. We have to mention that this method has been successfully applied
to a number of interesting pure and disordered spin Ising systems [42, 44, 49]. It has also
been used for transverse Ising models [50] and semi-infinite Ising systems [51, 52]. In all
these applications, it was shown that the FCA improve qualitatively and quantitatively the
results obtained in the frame of the mean-field theory. In this method, we consider a particular
spin σo(So) and denote by 〈σo〉c(〈(So)

n〉c, n = 1, 2) the mean value of σo((So)
n) for a given

configuration c of all other spins {σi , Sj ; i, j �= 0} when the site occupational numbers {ξi , ξ j }
and the random fields {Hi, H j} have fixed values. 〈σo〉c and 〈(So)

n〉c are then given by

〈σo〉c = Trσo σo exp(−β H σ
o )

Trσo exp(−β H σ
o )

(4)

and

〈(So)
n〉c = TrSo(So)

n exp(−β H S
o )

TrSo exp(−β H S
o )

(5)
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with

H σ
o = −

(
J

z∑
j=1

ξoξ j S j + ξo Ho

)
σo (6)

H S
o = −

(
J

z∑
i=1

ξoξiσi + ξo Ho

)
So (7)

where z is the nearest-neighbour coordination number of the lattice and β = 1/T . Trσo

(or TrSo) means the partial trace with respect to the σ -sublattice site o (or S-sublattice site
o). {S1, S2, . . . , Sz} ({σ1, σ2, . . . , σz}) are the nearest-neighbour spins of σo(So) with which it
directly interacts. One notes that, since H σ

o and H S
o depend on ξo (ξo = 0 or 1), (4) and (5)

can be written in the form

〈σo〉c = 1 − ξo

2σ + 1
Tro(σo) + ξo

Trσo σo exp(−β H̄ σ
o )

Trσo exp(−β H̄ σ
o )

(8)

〈(So)
n〉c = 1 − ξo

2S + 1
Tro((So)

n) + ξo
TrSo(So)

n exp(−β H̄ S
o )

TrSo exp(−β H̄ S
o )

(9)

which imply

〈ξoσo〉c = ξo
Trσo σo exp(−β H̄ σ

o )

Trσo exp(−β H̄ σ
o )

(10)

〈ξo(So)
n〉c = ξo

TrSo(So)
n exp(−β H̄ S

o )

TrSo exp(−β H̄ S
o )

(11)

where

H̄ σ
o = −

(
J

z∑
j=1

ξ j S j + Ho

)
σo,

and

H̄ S
o = −

(
J

z∑
i=1

ξiσi + Ho

)
So.

Performing the partial traces in (10) and (11) and then the thermal average over all spin
configurations, we obtain the following exact relations:

〈ξoσo〉 = ξo〈 f ({ξ j S j }, ho)〉 (12)

〈ξo(So)
n〉 = ξo〈Fn({ξiσi }, ho)〉 (13)

with

f ({ξ j S j }, ho) = 1

2
tanh

[
K

2

z∑
j=1

ξ j S j +
ho

2

]
(14)

F1({ξiσi }, ho) = 2 sinh
[
K

∑z
i=1 ξiσi + ho

]
1 + 2 cosh

[
K

∑z
i=1 ξiσi + ho

] (15)

F2({ξiσi }, ho) = 2 cosh
[
K

∑z
i=1 ξiσi + ho

]
1 + 2 cosh

[
K

∑z
i=1 ξiσi + ho

] (16)

where K = β J , ho = β Ho and 〈· · ·〉 denotes the canonical thermal average.
The next step is to carry out the configurational averaging over the site occupational

numbers ξi , to be denoted by 〈· · ·〉r .
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In order to perform the thermal and configurational averaging on the right-hand side of (12)
and (13), we expand the functions f ({ξi Si }, ho) and Fn({ξiσi}, ho) as finite polynomials of Sz

j
and σ z

i , respectively, that correctly account for the single-site kinematic relations. This can
conveniently be done by employing appropriate operators [48]

O(σ )(σi , ξi ) = [(σi + 1
2 )δσi ,1/2 + (−σi + 1

2 )δσi ,−1/2][ξiδξi ,1 + (1 − ξi )δξi ,o] (17)

O(S)(Sj , ξ j ) = [ 1
2 (Sj + (Sj )

2)δS j ,1 + 1
2 (−Sj + (Sj )

2)δS j ,−1 + (1 − (Sj )
2)δS j ,o]

× [ξ jδξ j,1 + (1 − ξ j )δξ j,o] (18)

where δA,a is a forward Kronecker delta function substituting any operator A on the right by
its eigenvalue a. Thus, the expansions of (14)–(16) are then given by

f ({ξ j S j }, ho) =
∏

j

O(S)(Sj , ξ j ) f ({ξ j S j }, ho) (19)

Fn({ξiσi }, ho) =
∏

i

O(σ )(σi , ξi )Fn({ξiσi }, ho). (20)

In order to carry out the thermal and site disorder configurational averaging, we have to
deal with correlation functions. We note that FCA has been designed to treat all spin self-
correlations exactly, while mean-field approximation neglects all spin correlations including
self-correlations. In this paper, we consider the simplest approximation by neglecting
correlations between quantities pertaining to different sites, but we include the correlation
between the site disorder and the local configurational-dependent thermal averages [53] of the
spin and use the exact identities

〈〈(1 − ξo)(So)
n〉〉r = 1 − c

2S + 1
Tro((So)

n) (21)

〈〈(1 − ξo)σo〉〉r = 1 − c

2σ + 1
Tro(σo) (22)

which are directly derived from (8)–(11). c denotes the average site concentration defined by
c = 〈ξ〉r . Doing this we find

〈〈 f ({ξ j S j }, ho)〉〉r =
z∏

j=1

[ +1∑
S j =−1

1∑
ξ j =o

P(Sj , ξ j )

]
f ({ξ j S j }, ho) (23)

〈〈Fn({ξiσi }, ho)〉〉r =
z∏

i=1

[ +1/2∑
σi =−1/2

1∑
ξi =o

R(σi , ξi )

]
Fn({ξiσi}, ho) (24)

with

P(Sj , ξ j ) =
+1∑

I1=−1

1∑
I2=o

a(I1, I2)δS j ,I1 δξ j ,I2 (25)

R(σi , ξi ) =
+1/2∑

k1=−1/2

1∑
k2=o

b(k1, k2)δσi ,k1δξi ,k2 (26)

where

a(±1, 1) = 1
2 (±mS1 + mS2), a(0, 1) = (c − mS2), a(I1, 0) = 1

3 (1 − c) (27)

b

(±1

2
, 1

)
=

(
c

2
± µσ

)
, b

(±1

2
, 0

)
= 1

2
(1 − c) (28)

where µσ = 〈〈ξi σi 〉〉r and mSn = 〈〈ξ j (Sj )
n〉〉r .
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Since the field is randomly distributed, we have to perform the random average of Hi

according to the probability distribution function Q(Hi) given by (2). The ordering parameters
µ and mn are then defined as µ = µσ and mn = mSn, where the bar denotes the random field
average. Thus, using (12), (13) and (23)–(26), we obtain the following set of coupled equations
for µ and mn :

µ = c
+1∑

I1=−1

· · ·
+1∑

Iz=−1

1∑
ξ1=o

· · ·
1∑

ξz=o

[ z∏
j=1

a(I j , ξ j )

]
f̄ ({ξ1 S1(I1), . . . , ξz Sz(Iz)}, p, h) (29)

mn = c
+1/2∑

k1=−1/2

· · ·
+1/2∑

kz=−1/2

1∑
ξ1=o

· · ·
1∑

ξz=o

[ z∏
i=1

b(ki , ξi )

]
F̄n({ξ1σ1(k1), . . . , ξzσz(kz)}, p, h) (30)

where µσ and mSn in (27) and (28) are replaced by µ and mn , respectively, and

f̄ (x, p, h) =
∫

Q(Ho) f (x, β Ho) dHo

F̄n(x, p, h) =
∫

Q(Ho)Fn(x, β Ho) dHo

with h = β H , Sj (I ) = I and σi (k) = k. It is advantageous to carry out further algebraic
manipulations on (29) and (30) in order to transform their right-hand sides to an expansion
with respect to mn (or µ) which is suitable for the study of the present system, even in the
vicinity of the critical temperature. To this end, we follow the procedure used by two of us
(NB and AF) in the case of a mixed spin Ising model [54]. Doing this, we obtain

µ = c
z∑

n1=o

z−n1∑
n2=o

n1∑
i1=o

n2∑
i2=o

2−n1−n2 Cn1
z Cn2

z−n1
Ci1

n1
Ci2

n2
(−1)i2(m1)

i1+i2(m2)
n1+n2−i1−i2

× (1 − m2)
z−n1−n2 f̄ (K (n1 − n2), p, h) (31)

and

mn = c
z∑

n1=o

z−n1∑
n2=o

n1∑
i1=o

n2∑
i2=o

2−n1−n2+i1+i2 Cn1
z Cn2

z−n1
Ci1

n1
Ci2

n2
(−1)i2(c)n1+n2−i1−i2(µ)i1+i2

× (1 − c)z−n1−n2 F̄n

(
K

2
(n1 − n2), p, h

)
(32)

where C p
n are the binomial coefficients n!/[p!(n − p)!]. Relations (31) and (32) are the

state equations within the one-spin cluster approximation, which can be called the first-order
approximation. Higher-order FCA can be defined as follows: we define the second-order
approximation for 〈σo〉c(〈(So)

n〉c) performing the traces over σo(So) and its first neighbours
{σ1, σ2, . . . , σz}({S1, S2, . . . , Sz}), all other spins and all occupational numbers and random
fields having fixed values. The obtained expression for 〈σo〉c(〈(So)

n〉c) in this case will
depend only on the external first neighbours of the spins belonging to the border of the
cluster {σ1, σ2, . . . .σz}({S1, S2, . . . , Sz}). Following the same procedure for the thermal and
configurational averaging as we did for the first-order approximation, and then performing
the random average of Hi , we obtain the state equations within the (z + 1)-spin cluster
approximation. Convergence of successive higher approximations has been studied [55] for
the two-dimensional site dilute Ising model and it was shown that the critical temperature
Tc(c = 1) and the site percolation threshold c∗ are in better agreement with the exact ones. For
our purpose in this paper, we do not need to go beyond the one-spin cluster approximation.
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3. Phase diagrams

We are first interested in investigating the phase diagram of the system described by the
Hamiltonian (3). Let us first write (31) and (32) for m1 in the following form:

µ = A1(K , p, c, h, m2)m1 + B1(K , p, c, h, m2)(m1)
3 + · · · (33)

m1 = A2(K , p, c, h)µ + B2(K , p, c, h)(µ)3 + · · · (34)

where Ai , Bi , . . . (i = 1, 2) are obtained from (31) and (32) by choosing the appropriate
corresponding combinations of indices i j ( j = 1, 2). Substituting m1 and m2 in (31) with their
expression taken from (32) we obtain an equation for µ of the form

µ = aµ + bµ3 · · · (35)

where

a = A1 A2 (36)

and

b = A1 B2 + B1(A2)
3. (37)

The second-order transition is then determined by the equation

1 = A1(K , p, c, h, mc
2)A2(K , p, c, h) (38)

where mc
2 is the solution of equation (32) for µ → 0, namely

mc
2 = c

z∑
n1=o

z−n1∑
n2=o

Cn1
z Cn2

z−n1
2−n1−n2(c)n1+n2(1 − c)z−n1−n2 F̄2

(
K

2
(n1 − n2), p, h

)
. (39)

The magnetization µ in the vicinity of the second-order transition is given by

µ2 = 1 − a

b
. (40)

The right-hand side of (40) must be positive. If this is not the case, the transition is of first
order. In the (T, H ) plane and for a given concentration of the magnetic sites, the point at
which a = 1 and b = 0 characterizes the tricritical point.

3.1. The undiluted system

First, let us examine the phase diagram of the undiluted case (c = 1) for the simple cubic
lattice (z = 6). In figure 1, we represent the phase diagram in the (T, H ) plane for various
values of p. For p = 1 (or H = 0), the system reduces to the three-dimensional mixed
spin- 1

2 and spin-1 Ising model, which exhibits a transition at a reduced critical temperature Kc.
Comparing with the MC value Kc = 0.526 [56], the FCA result (0.4736) improves the mean-
field approximation value (0.4082). When the random field is bimodally distributed (p = 0),
the critical temperature decreases gradually from its value Tc (H = 0) in the mixed spin system,
to end in a tricritical point. As shown in the figure, when we consider a trimodal random field
distribution (i.e. p �= 0), the system keeps a tricritical behaviour for a relatively small range
of p (0 � p � 0.2899). The T component of the tricritical point decreases with increasing
values of p and vanishes at p = 0.2899. So, a vestigial point which exists in the mono-atomic
RFIM [35] does not occur in the random field mixed spin Ising model. When p belongs to the
range 0.2899 < p � 1, the tricritical behaviour disappears and all transitions are always of
second order for any value of the field H . Moreover, we note the existence of a critical value
p∗ = 0.5259, indicating two qualitatively different behaviours of the system which depend on
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.35

c=1.

Figure 1. The phase diagram in the T –H plane of the random field mixed spin- 1
2 and spin-1 Ising

system on a simple cubic lattice (z = 6). The number accompanying each curve denotes the value
of p.

the range of p. Thus, for p < p∗, the system exhibits at the ground state a phase transition at
a finite critical value Hc of H . But for p∗ < p < 1, there is no critical field and therefore, at
very low temperature, the ordered state is stable for any value of the field strength. This latter
behaviour is qualitatively similar to that obtained in the random field spin- 1

2 Ising model [35].
It is also worth noticing here that such a critical value p∗ has been found [54] by two of us (NB
and AF) in the study of a mixed spin Ising model in a transverse random field. As expected,
we can see in figure 1 that, for a fixed value of H , the critical temperature is an increasing
function of p. As clearly shown from the figure, the system exhibits a reentrant behaviour in
narrow ranges of H and p. This phenomena is due to the competition between the exchange
interaction and frustration induced by quenched local fields. It is interesting to note here that
such reentrance does not exist in the spin- 1

2 RFIM for a trimodal distribution [34, 35].

3.2. The site diluted system

First, let us investigate the system in the absence of the field (H = 0 or p = 1) by solving
numerically (38). For the simple cubic lattice (z = 6), the phase diagram is represented in
figure 2 and it expresses the known result of a diluted magnetic system [42, 44, 54]. The critical
temperature Tc decreases linearly from its value in the mixed Ising system Tc(c = 1), to vanish
rapidly at the percolation threshold c∗ = 0.2824, which is quite good compared with the best
value of 0.31 calculated by Sykes and Essam [57]. Secondly, we study the system described by
the Hamiltonian (3) when the longitudinal field is bimodally distributed (p = 0). Figure 3(a)
summarizes the results for the case of the simple cubic lattice. These give the sections of the
critical surface Tc(c, H ) with planes of fixed values of the dilution parameter c, and therefore
they show the influence of c on the critical line of the random field mixed spin Ising model [45].
From the various transition lines plotted when c takes values greater than c∗, it is seen that the
system keeps a tricritical behaviour only when at least half of the sites (0.508 < c � 1) of
the system are magnetic. The H component of the tricritical point decreases with the value



The diluted random field mixed spin Ising model 9675

0.0 0.4 0.8

0.0

1.0

2.0

Tc /J

c

H/J=0.

Figure 2. The phase diagram of the diluted mixed spin- 1
2 and spin-1 Ising system on a simple

cubic lattice (z = 6) in the absence of the longitudinal field (H = 0 or p = 1).
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Figure 3. The phase diagram in the T –H plane of the diluted random field mixed spin Ising
system on a simple cubic lattice (z = 6) with (a) the bimodal distribution (p = 0) and (TCL) is
the tricritical line. The number accompanying each curve denotes the value of c. (b) Trimodal
distributions: p = 0.45 (full curves), p = 0.52 (broken curves) and p = 0.6 (dotted curves). The
number accompanying each curve denotes the value of c.

of c and there exists a tricritical line (TCL) which vanishes at c = 0.508. When c belong to
the range c∗ < c < 0.508, the tricritical behaviour disappears and all transitions are always of
second order for any value of the field. We also note that the phase diagram shows a reentrance
in narrow ranges of H and c.

Next, we investigate the phase diagrams of the system when the form of the random field
is chosen to be a trimodal distribution (p �= 0). In figure 3(b), we represent the influence of
the dilution on the phase diagram of the system when the transition is of second order for any
value of H . As illustrated in this figure, three types of effects are shown which depend on the
range of p. For the first type (for instance p = 0.45), the general behaviour of the critical
temperature Tc(c, H ) falls with decreasing c and increasing H , and vanishes at a critical value
Hc of the field strength which depends on the value of c.
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Figure 4. The dependence of the critical value p∗ as a function of the dilution parameter c.

Since the undiluted version of the system under study exhibits a reentrant behaviour when
the fraction p of spins not exposed to the field H is near p∗, it is worth investigating the effects
of the dilution parameter on such reentrance. In figure 3(b), we also represent the variation
of the critical temperature with the field H/J , keeping p fixed (p = 0.52), for various values
of c. Our results indicate that the diluted system exhibits a reentrant behaviour only when the
dilution parameter c is very close to 1 (0.959 < c < 1 for p = 0.52). Thus, for the remaining
values of c, the critical temperature decreases gradually from its value Tc/J (H = 0) to vanish
at some c-dependent critical value Hc of the field.

Now, let us examine the effect of dilution on the system when p is greater than p∗ (i.e. there
is no critical magnetic field at the ground state). As clearly seen in figure 3(b), the phase diagram
plotted in the T –H plane when p = 0.6 (p > p∗(c = 1)) shows two qualitatively different
behaviours which depend on the range of c. For the chosen value of p, when 0.718 < c � 1,
the system does not exhibit a transition at T = 0 and therefore it behaves like the undiluted
system. But for c∗ < c � 0.718, the system undergoes at the ground state a phase transition
at a finite critical value Hc of H . Thus, the dilution may destroy the low temperature ordered
state for any H , when it exists in the undiluted system. We have to mention that the properties
of the undiluted system (c = 1), related to the existence of the value p∗, also appear in the
diluted case, but the location of p∗ depends on the concentration c of magnetic sites. As shown
in figure 4, p∗ increases with decreasing values of c which is physically reasonable.

4. Other thermodynamical properties

Next, we evaluate other relevant thermodynamical quantities such as the internal energy U ,
specific heat C and zero-field magnetic susceptibility χ of the present system.

4.1. Internal energy and specific heat

In the spirit of the FCA, (12) and (13) can be generalized by the following exact relations:

〈goξoσo〉 = ξo

2

〈
go tanh

[
K

2

z∑
j=1

ξ j S j +
ho

2

]〉
(41)
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〈Goξo So〉 = ξo

〈
Go

2 sinh
[
K

∑z
i=1 ξiσi + ho

]
1 + 2 cosh

[
K

∑z
i=1 ξiσi + ho

]
〉

(42)

where go and Go represent arbitrary functions of spin variables except for σo and So,
respectively. For a given configuration of the random fields and the site occupational numbers,
the internal energy Uσ S of the system described by the Hamiltonian (3) is given by

Uσ S = −J
N

2

〈∑
σ

ξo So

〉
− N

2
〈Hoξoσo〉 − N

2
〈Hoξo So〉 (43)

where
∑

σ = ∑z
i=1 ξiσi and N is the total number of sites. In order to calculate 〈∑σ ξo So〉,

we substitute Go = ∑
σ in (42). Then it can be written as〈∑

σ
ξo So

〉
= ξo

〈∑
σ

2 sinh
[
K

∑z
i=1 ξiσi + ho

]
1 + 2 cosh

[
K

∑z
i=1 ξiσi + ho

]
〉
. (44)

The second and third terms in (43) can also be calculated by using (41) and (42) with go = Ho

and Go = Ho.
Following the same procedure as for the evaluation of µ and mn , namely using

the generalized Van der Waerden operators (17), (18) and the single-site probability
distributions (25) and (26), we find〈〈∑

σ
ξo So

〉〉
r

= c
+1/2∑

k1=−1/2

· · ·
+1/2∑

kz=−1/2

1∑
ξ1=o

· · ·
1∑

ξz=o

[ z∏
i=1

b(ki, ξi )

]

× φ1({ξ1σ1(k1), . . . , ξzσz(kz)}, ho) (45)

〈〈Hoξoσo〉〉r = c
+1∑

I1=−1

· · ·
+1∑

Iz=−1

1∑
ξ1=o

· · ·
1∑

ξz=o

[ z∏
j=1

a(I j , ξ j )

]

× φ2({ξ1S1(I1), . . . , ξz Sz(Iz)}, ho) (46)

〈〈Hoξo So〉〉r = c
+1/2∑

k1=−1/2

· · ·
+1/2∑

kz=−1/2

1∑
ξ1=o

· · ·
1∑

ξz=o

[ z∏
i=1

b(ki, ξi )

]

× φ3({ξ1σ1(k1), . . . , ξzσz(kz)}, ho) (47)

where φ1 = ∑
σ F1, φ2 = Ho f , φ3 = Ho F1, σi(k) = k and Si (I ) = I .

Performing the configurational averaging over the random fields Hi according to the
probability distribution function Q(Hi), and further algebraic manipulations [54], the internal
energy U = Ūσ S is given by

− 2U

N J
= c

z∑
n1=o

z−n1∑
n2=o

n1∑
i1=o

n2∑
i2=o

2−n1−n2 Cn1
z Cn2

z−n1
Ci1

n1
Ci2

n2
(−1)i2 [2i1+i2(c)n1+n2−i1−i2(µ)i1+i2

× (1 − c)z−n1−n2(φ̄1 + φ̄3) + (m1)
i1+i2(m2)

n1+n2−i1−i2(1 − m2)
z−n1−n2 φ̄2].

(48)

Using this expression of U(T, H, c, p), we can determine the magnetic contribution to the
specific heat via the standard relation

C(T, H, c, P) = ∂U(T, H, c, p)

∂T
. (49)

For the three-dimensional undiluted system (c = 1), figures 5(a), (b) represent a variety of
curves showing the temperature dependence of the internal energy U and the specific heat C
for the simple cubic lattice in the case of bimodal (p = 0) and trimodal (p �= 0) distributions.
As seen from these figures, U exhibits a singularity at the transition temperature.
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Figure 5. The temperature dependence of the internal energy U and the magnetic specific heat C
of the random field mixed spin Ising system on the simple cubic lattice (z = 6) for selected values
of H/J with: (a) p = 0 (full curves), p = 1/3 (broken curves) and (b) p = 0.6.

At low temperatures, these figures show that

(i) for a given relatively small value of p, the absolute value of the internal energy |U | of the
system decreases with increasing strength of the field; and

(ii) for a selected non-zero value of H (less than the critical value), |U | is an increasing
function of the concentration p of the site not exposed to the field.

Moreover, we note a remarkable behaviour of the energy U(T = 0, H, p) of the ordered state
at zero temperature. Indeed, there exists a critical value pc(c = 1) = 0.374 of p indicating
two qualitatively different behaviours of the ground state energy as a function of the field H .
Thus, when p belongs to the range 0 � p < pc, the energy of the ordered state, at T = 0,
does not depend on the value of H (any H < Hc); while for pc < p < 1, the ground state
energy of the ordered system does not still depend on relatively small values of H , but for
larger H it becomes sensitive to the value of the field strength. These behaviours are illustrated
in figures 5(a), (b) for selected values of p. On the other hand, we have plotted in the same
figures the magnetic contribution C to the specific heat of the system. For both distributions
(p = 0 and p �= 0), its thermal behaviour shows a discontinuity at the transition temperature
Tc(H, p) and the amplitude of the jump gradually decreases with increasing value of H . We
also note, from (49), that C is proportional to 1/T 2 in the limit T → ∞. Moreover, as
seen from the figures, C is remarkably depressed by decreasing the field strength H . It is
worth noticing here that such a depression has been found recently [58] in the high magnetic
concentration Ising antiferromagnet Fe0.93Zn0.07F2 in a magnetic field using optical linear
birefringence techniques.

Next, we investigate the effects of dilution on the thermal behaviour of the internal energy
and specific heat in comparison with those of the pure system. Results for the case of a simple
cubic lattice and for bimodal and trimodal distributions are summarized in figures 6(a), (b)
and 7(a), (b). These figures are plotted for two selected values of c: c = 0.5(c > c∗) and
c = 0.2(c < c∗) which are, respectively, greater and less than the percolation threshold c∗. For
c∗ < c < 1, and as seen from figures 6(a), (b), the internal energy exhibits qualitatively the same
behaviour as the pure system; in particular a singularity at the transition temperature Tc(p, H )

when H < Hc. But for H > Hc, U is an analytic function and therefore no transition occurs.
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Figure 6. The temperature dependence of the internal energy U and magnetic specific heat C of
the diluted (c = 0.5) random field mixed spin Ising system on a simple cubic lattice (z = 6) for
selected values of H/J with: (a) p = 0 (full curves), p = 1/3 (broken curves) and (b) p = 0.6.
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Figure 7. The temperature dependence of the internal energy U and magnetic specific heat C of
the diluted (c = 0.2) random field mixed spin Ising system on a simple cubic lattice (z = 6) for
selected values of H/J with p = 0 (full curves) and p = 1/3 (broken curves).

In the undiluted system, we have defined a critical value of p, namely pc, below which the
ground state energy of the ordered system does not depend on the value of H (any H < Hc).
As can be expected, such behaviour appears in the diluted case, but only when the impurity
concentration is relatively important (0.805 < c � 1). For c∗ < c � 0.805, such a value of
pc does not exist and the energy of the ordered system at T = 0 becomes sensitive to the value
of the field strength for any p.
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Concerning the specific heat C , we have to indicate that, for c∗ < c < 1, two different
contributions to C are present: the singular one coming from the unique infinite cluster and the
regular one coming from the isolated finite clusters, whereas, for 0 < c < c∗, the singularity
disappears and the specific heat is due exclusively to the finite clusters. In figures 6(a), (b), we
have plotted the specific heat of the system for both distributions (p = 0 and p �= 0) and they
show a discontinuity at the transition temperature and the size of the jump clearly depends
on the values of p, c and H . Finally, we note that, when the dilution parameter is less than
the percolation threshold (c < c∗), the system is always disordered and does not undergo a
transition for any value of p and H . Consequently, the internal energy and the specific heat
do not exhibit singularities which are shown in figure 7.

4.2. Susceptibility

Let us now investigate the zero-field isothermal magnetic susceptibility. To this end, we add to
the Hamiltonian (3) the term −B(

∑
i ξiσi +

∑
j ξ j S j ), where B is an external magnetic field.

Consequently, identities (12) and (13) are generalized into

〈ξoσo〉 = ξo〈 f ′({ξ j S j }, ho, b)〉 (50)

〈ξo(So)
n〉 = ξo〈F ′

n({ξiσi }, ho, b)〉 (51)

where

f ′({ξ j S j }, ho, b) = 1

2
tanh

[
K

2

z∑
j=1

ξ j S j +
ho

2
+

b

2

]
(52)

F ′
1({ξi , σi }, ho, b) = 2 sinh

[
K

∑z
i=1 ξiσi + ho + b

]
1 + 2 cosh

[
K

∑z
i=1 ξiσi + ho + b

] (53)

F ′
2({ξiσi }, ho, b) = 2 cosh

[
K

∑z
i=1 ξiσi + ho + b

]
1 + 2 cosh

[
K

∑z
i=1 ξiσi + ho + b

] (54)

with b = β B . To obtain the state equations, we follow the procedure described in the theoretical
framework. We find equations similar to those expressed in (31) and (32). Thus, the state
equations for the simple cubic lattice are given by

µ = c
6∑

n1=o

6−n1∑
n2=o

n1∑
i1=o

n2∑
i2=o

2−n1−n2 Cn1
6 Cn2

6−n1
Ci1

n1
Ci2

n2
(−1)i2(m1)

i1+i2(m2)
n1+n2−i1−i2

× (1 − m2)
6−n1−n2 f̄ ′(K (n1 − n2), p, h, b) (55)

mn = c
6∑

n1=o

6−n1∑
n2=o

n1∑
i1=o

n2∑
i2=o

2−n1−n2+i1+i2 Cn1
6 Cn2

6−n1
Ci1

n1
Ci2

n2
(−1)i2(c)n1+n2−ii −i2(µ)i1+i2

× (1 − c)6−n1−n2 F̄ ′
n

(
K

2
(n1 − n2), p, h, b

)
. (56)

The initial susceptibility χ per site is defined by

χ = 1
2 (χµ + χm) (57)

where

χµ = ∂µ

∂ B

∣∣∣∣
B=0

and χm = ∂m1

∂ B

∣∣∣∣
B=0

. (58)
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To calculate χ , it is advantageous to rewrite (55) and (56) as finite polynomials of m1 and µ.
So they take the following forms:

µ =
6∑

n=o

6−n∑
l=o

Cn
6 C1

6−nm1
2mn

1 Ā′
l,n(K , h, p, c, b) (59)

m1 =
6∑

n=o

Cn
6 µn B̄ ′

n(K , h, p, c, b) (60)

m2 =
6∑

n=o

Cn
6 µn D̄′

n(K , h, p, c, b). (61)

The coefficients Ā′
l,n , B̄ ′

n and D̄′
n are complicated expressions involving hyperbolic functions

and will not be given. Deriving (59)–(61) with respect to B at the point B = 0, and eliminating
∂m2
∂ B , the local susceptibilities pertaining to µ and m are given by

χµ = ao + a2co + a1bo

1 − (a2c1 + a1b1)
(62)

χm = bo + b1
ao + a2co + a1bo

1 − (a2c1 + a1b1)
(63)

where

ao =
6∑

n=o

6−n∑
l=o

Cn
6 C1

6−nm1
2mn

1

∂ Ā′
l,n

∂ B

∣∣∣∣
B=o

, a1 =
6∑

n=o

6−n∑
l=o

Cn
6 C1

6−nnm1
2mn−1

1 Ā′
l,n

∣∣∣∣
B=o

,

a2 =
6∑

n=o

6−n∑
l=o

Cn
6 C1

6−n1ml−1
2 mn

1 Ā′
l,n

∣∣∣∣
B=o

, bo =
6∑

n=o

Cn
6 µn ∂ B̄ ′

n

∂ B

∣∣∣∣
B=o

,

b1 =
6∑

n=o

Cn
6 nµn−1 B̄ ′

n

∣∣∣∣
B=o

, co =
6∑

n=o

Cn
6 µn ∂ D̄′

n

∂ B

∣∣∣∣
B=o

, c1 =
6∑

n=o

Cn
6 nµn−1 D̄′

n

∣∣∣∣
B=o

.

For the three-dimensional undiluted system (c = 1), figures 8(a), (b) show the temperature
dependence of χ for both distributions. For the bimodal (p = 0) and trimodal (p = 1/3) cases,
χ(T ) is plotted in figure 8(a) for selected values of H when the latter is less than the critical
value Hc(p). When Hc does not exist, namely p > p∗, the system can exhibit a transition for
any value of H . The corresponding thermal behaviour of χ is shown in figure 8(b) for p = 0.6.
As expected, χ diverges at the critical point Tc(p, H ) and presents the 1/T behaviour in the
limit T → ∞. Here again, it is worth noting that the behaviours of χ with H at low and high
temperatures are similar to those obtained recently [59] in Fe0.93Zn0.07F2.

In order to study the effects of dilution on the above zero-field isothermal magnetic
susceptibility χ , we represent in figures 9(a), (b) and figures 10(a), (b) the temperature
dependence of χ for two selected values of c: c = 0.5 (c > c∗) and c = 0.2 (c < c∗). From
these figures, we observe that χ vanishes in the limit T → 0 only for c = 1, which corresponds
to the absence of finite clusters in the system. In the case c∗ < c < 1 χ diverges twice, one
at the critical point Tc(p, c, H ) and the other at T = 0, which correspond, respectively, to
the infinite cluster and finite cluster contributions. In other words, we observe the coexistence
of a Curie–Weiss-type law with a Curie-type one. As in the pure case, the susceptibility of
the diluted system also presents the 1/T behaviour in the limit T → ∞. Finally for c < c∗,
the thermal behaviour of χ is plotted in figure 10 (c = 0.2). As seen from this figure, the
divergence remains only at T = 0 for any values of H and p.
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Figure 8. The temperature dependence of the initial magnetic susceptibility χ of the random field
mixed spin Ising system on a simple cubic lattice (z = 6) for selected values of H/J with: (a)
p = 0 (full curves), p = 1/3 (broken curves) and (b) p = 0.6.
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Figure 9. The temperature dependence of the initial magnetic susceptibility χ of the diluted
(c = 0.5) random field mixed spin Ising system on a simple cubic lattice (z = 6) for selected
values of H/J with: (a) p = 0 (full curves), p = 1/3 (broken curves) and (b) p = 0.6.

5. Conclusions

In this paper, we have studied thermodynamical properties of the three-dimensional diluted
random field mixed spin- 1

2 and spin-1 Ising model. The random fields are assumed to be
uncorrelated variables and obey the bimodal and trimodal distributions. We have used the FCA
within the framework of a single-site cluster theory. In this approach, we have derived the
state equations using appropriate distributions accounting exactly for the single-site kinematic
relations. Let us summarize by stating the main results of this investigations.
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Figure 10. The temperature dependence of the initial magnetic susceptibility χ of the diluted
(c = 0.2) random field mixed spin Ising system on a simple cubic lattice (z = 6) for selected
values of H/J with p = 0 (full curves) and p = 1/3 (broken curves).

First, we have examined the phase diagram of the undiluted system for various values of
p (p measures the fraction of spins not exposed to the longitudinal field H ). For the bimodal
distribution (i.e. p = 0), we have found that the system undergoes a second phase transition
for low random field, which ends in a tricritical point. For the trimodal case (i.e. p �= 0), the
system keeps this behaviour for relatively small values of p (0 � p < 0.289). We note that
the T component of the tricritical point vanishes at p = 0.289, which means that the vestigial
point existing in the mono-atomic RFIM [35] does not occur in the random field mixed spin
Ising model. On the other hand, we have define a critical value p∗ separating two qualitatively
different behaviours of the system: for p less than p∗, the system exhibits, at the ground state,
a phase transition at a finite critical value Hc. However, for p greater than p∗, Hc does not
exist and the ordered state is stable at very low temperatures for any value of the field strength
H . It is also worth noting here that the system exhibits a reentrant behaviour in narrow ranges
of H and p. This reentrance does not exist in the mono-atomic spin- 1

2 RFIM [34, 35].
Secondly, we have investigated the influence of site dilution on the obtained phase

diagrams. In bimodal distribution (p = 0), we have found that the system exhibits a tricritical
behaviour only when at least half of the sites are magnetic. In the trimodal case, we have
shown that the system keeps its reentrance behaviour only when the impurity concentration c
is close to 1. Furthermore, we have found that the above critical value p∗ depends on the value
of c and then we have plotted, in the p∗–c plane, the curve which separates the two domains
corresponding, respectively, to the existence and absence of the finite critical field Hc.

Other relevant thermodynamical quantities have been evaluated,such as the internal energy
U , specific heat C and zero-field magnetic susceptibility χ . Thus, the temperature dependence
of U and C are explored for both distributions and it revealed a number of characteristic
features at low temperature. In particular, for the undiluted system, we have defined a second
critical value pc indicating two qualitatively different behaviours of the ground state energy
U(T = 0, p, H ) as a function of the field H : for 0 � p � pc, the energy of the ordered state,
at T = 0, does not depend either on H (any H < Hc) or on p. However, for pc < p < 1, the
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ground state energy of the ordered system does not still depend on small values of H but for
larger H , it becomes sensitive to H . The same behaviour has also been found in the dilution
case, but only when the dilution parameter c is relatively important; otherwise, such a critical
value pc does not exist and therefore the ground state energy depends on H for any value of the
concentration p. Furthermore, the thermal behaviour of specific heat C has been studied when
the random field is bimodally and trimodally distributed. We have shown that the amplitude
of the jump of C (at the transition) depends on p, H and c. In particular, for given values of p
and H , it gradually decreases with c. We also note that, for the pure case, C is depressed by
decreasing H . Such a depression has been found recently [58] in Fe0.93Zn0.07F2 in a magnetic
field. Moreover, we have investigated the temperature dependence of the susceptibility χ for
both distributions. In the pure system, χ vanishes at T = 0, whereas for the diluted case, and
above the percolation threshold, we have found that χ diverges twice, namely at the critical
point and at T = 0, which correspond, respectively, to the infinite cluster and finite cluster
contributions. It has also been found that χ presents the 1/T behaviour in the limit T → ∞.
Finally, it is worth mentioning here that, for c = 1, the behaviours of χ with H at low and
high temperatures are similar to those obtained in Fe0.93Zn0.07F2 [59].

Finally, we mention that the method (FCA) used in this paper is much less sophisticated
than the real space renormalization group (RSRG) and applies to a wide class of disordered
systems. In particular, site dilution (which is a more physical situation than bond dilution) is
much easier to study within the FCA. This is not the case for RSRG. Another advantage of the
FCA is that

(i) it is not necessary to introduce ad hoc approximations for the renormalized probability
distribution of the Hamiltonian parameters, and

(ii) not to choose in a more or less arbitrary way the ‘right’ random variable for which there
is no clear criterion [60].
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